Sabtu, 30 April 2016

Basic Principles of ICU

Basic Principles of ICU
Plan and Design Overall ICU floor plan and design should be based on the reception pattern of the patient, staff and visitor traffic patterns, and the need for supporting facilities such as nursing stations, storage, administrative space, administration and education requirements, and services that are unique to individual institutions , Eight to twelve beds per unit considered to be the best from a functional perspective. Each health facility should consider the need for positive and negative-pressure isolation rooms in the ICU. This need will depend primarily on the patient population and the State Department of Public Health requirements.
Each intensive care unit should be different geographic areas within the hospital, if possible, with controlled access. No through traffic to other departments should occur. Supply and professional traffic should be separated from the public / visitor traffic. The location should be chosen so that the unit is adjacent to, or in the elevator ride directly to and from, the Emergency Department, Operating Room, intermediate care unit, and Department of Radiology.

Area patients. 
Patients should be placed such that visualization directly or indirectly (for example with video monitor) by health care providers is possible at any time. This allows monitoring of patient status under both routine and emergency circumstances. The preferred design is to allow direct connection of vision among patients and nursing center station. In the ICU with a modular design, the patient should be visible from each nursing substation. The sliding glass doors and partitions facilitate this arrangement, and improving access to the room in an emergency situation. Signals from patient call systems, alarms from monitoring equipment, and telephone adds to the sensory overload in critical care units. Without prejudice to their importance or sense of urgency, the signal must be modulated to a level that will alert a member of staff, but given less dangerous. International Noise Council has recommended that noise levels in acute hospital care area does not exceed 45 dB (A) during the day, 40 dB (A) at night and 20 dB (A) at night. (A-weighted decibel scale filter out low frequency sounds and more closely represents the range of the human ear). Especially, the noise level in hospitals mostly between 50-70 dB (A) with occasional episodes above this range. For this reason, sound-absorbing floor coverings must be used, keep infection control, maintenance, and equipment necessary motion under consideration. The walls and ceilings must be made of material with high sound absorption capability. Ceiling soffets and baffels help reduce noise echoed. The door should be offset and not placed in symmetrically opposed positions, to reduce sound transmission. Counter, partitions and glass doors are also effective in reducing the noise level.
Central Station. A central nursing station should provide a convenient area of ​​sufficient size to accommodate all the functions necessary staff. When the ICU is of modular design, each nursing substation should be able to provide most if not all of the functions of a central station. There should be adequate overhead and task lighting, and wall mounted clock must be present. Enough space for computer terminals and printers are very important when the automated system is being used. Patient records should be readily accessible. Adequate space and seating surface to record medical records by doctors and nurses should be provided. Shelves, filing cabinets and other storage for medical record forms should be located so that they can be immediately accessed by all personnel who require their use. Although a secretarial area may be located separately from the central station, should be easily accessible as well.

X-ray area
A separate room or a different area near each ICU or ICU cluster should be designated for the display and storage of patient radiographs. An illuminated box to view or carousel of appropriate size should be present to allow simultaneous display serial radiographs. A "light" should also be available. Regional work and storage. Work area and storage for critical supplies should be placed within or immediately adjacent to each ICU. Niche must provide for storage and quick retrieval crash carts and portable monitor / defibrillator. There should be a separate drug area of ​​at least 50 square meters contain a refrigerator for medicines, safe double locking for controlled substances, and a sink with hot and cold running water. Countertops should be reserved for treatment preparation, and cabinets should be available for storage of medicines and supplies. If the area is enclosed, glass wall or wall should be used to allow visualization of the patient and ICU activities during medication preparation, and to allow monitoring of the area itself from the outside to ensure that only authorized employees are in. Receptionist Area. Each ICU or ICU cluster should have a reception area to control visitor access. Ideally, it should be in that all visitors must pass through this area before entering. The receptionist should be connected to the ICU (s) via telephone and / or other social systems. It is desirable to have visitors apart from those used by health professionals sign. The entrance visitors should securable if the need arises

Special Procedures Room
If the room is a special procedure to be desired, must be located within, or adjacent to, the ICU. One of the special procedures ICU can serve several near. Consideration should be given to the ease of access for patients transported from areas outside the ICU. The room size should be sufficient to accommodate the necessary equipment and personnel. Monitoring capabilities, equipment, support services, and safety considerations should be consistent with that given in the ICU right. Work surfaces and storage areas should be sufficient to keep all the equipment needed and allows the performance of all desired procedures without the need for healthcare personnel to leave the room.

Rooms are clean and soiled utility
Clean and dirty utility rooms should be separate rooms that do not have interconnecting. They must be sufficiently temperature controlled, and the supply of air from the dirty utility room should be discharged. The floor should be covered with material without seams for easy cleaning. Utility room cleaner should be used for storage of all equipment is clean and sterile, and can also be used for the storage of clean linen. Shelves and cabinets for storage should be located high enough off the floor to allow easy access to the lower floor for cleaning. Dirty utility room sink must contain both clinical and hopper with mixing hot and cold faucets. Separate closed containers must be provided for soiled linen and waste material. There should be appointed mechanism for disposal of items contaminated with body substances and liquids. Special containers should be provided for the disposal of needles and other sharp objects.

Storage equipment
An area must be provided for the storage and security of patient-care equipment items not in active use. Space must be sufficient to provide easy access, easy location of desired equipment, and easy retrieval. Grounded electrical outlets must be provided in a storage area in an amount sufficient to enable charging the battery operated items. Regional Food Preparation. A patient food preparation area must be identified and equipped with a food preparation surface, the ice-making machine, a sink with hot and cold water, a desk stove and / or microwave oven, and refrigerator. The refrigerator should not be used for storage of laboratory specimens. A hand washing facilities must be located in or near the area. Staff Lounge. A staff room must be provided on or near each ICU or ICU group to provide a private, comfortable, and relaxing environment. Safe locker facilities, showers and toilets must be present. That area must include comfortable seating and food storage and preparation of adequate facilities, including a refrigerator, stove table and / or microwaves. The lounge is to be attributed to the ICU by telephone or intercommunication system, and emergency cardiac arrest alarms should sound in. Conference Room. A meeting room should be located for the use of physicians and ICU staff. These rooms should be linked to each relevant ICU by telephone or other intercommunication system, and emergency cardiac arrest alarms should be audible in the room. The conference room can have several purposes, including continuing education, education housestaff, or conference multidisciplinary patient care. A conference room is ideal for storage of medical and nursing reference materials and resources, VCR, and computerized interactive learning and self-paced equipment. If the conference room is not big enough for education, classroom space must also be provided nearby.

Lounge visitors / Lounges.
A visitor reception area or waiting areas should be provided near each ICU or ICU cluster. Visitor access must be controlled from the reception area. One and one-half to two seats per bed critical care are recommended. Public telephone (preferably with privacy attachment) and eating facilities should be available to visitors. Television and / or music must be provided. Public toilet facilities and drinking fountains should be placed in the lounge area or nearby. Warm colors, carpeting, indirect soft lighting, and the desired window. Various seating, including upright, lounge, and a reclining chair, is also desirable. Educational materials and a list of hospital and community-based support and service resources should be displayed. A separate family room consultation is strongly recommended.
Patient Transport Routes. Patients are transported to and from the ICU should be transported via separate from those used by people visiting the corridor. Patient privacy must be maintained and must transport patients quickly and unobstructed. When the lift transportation costs, an oversized typing lift, separate from public access, should be provided.

Offers and Service Corridors
A perimeter corridor with easy entrance and exit should be provided for the provision of services and ICU respectively. Elimination of soiled items and waste must also be done through this corridor. This helps to minimize disruption to patient care activities and minimize unnecessary noise. The corridors must be at least 8 feet in width. Doors, openings, and the parts into each ICU should be a minimum of 36 inches wide to allow easy and unobstructed movement of equipment and supplies. Floor coverings should be chosen to withstand heavy use and allow the wheels of heavy equipment to be moved without difficulty

Patient Module
Module Patients should be designed to support all the functions necessary health. JCAHO requires floor space allocated to each bed enough to accommodate all the equipment and personnel that may be needed to meet patient care needs. Each State Department of Public Health should be consulted for specific guidance related to the size of area per bed, or the space required between the beds. Ward-type ICU should allow at least 225 square meters of floor space clear per bed. ICU patients with individual modules should allow at least 250 square meters per room (assuming one patient per room), and provide a minimum width of 15 meters, not including extra room (waiting room, toilet, storage). Each isolation room should contain at least 250 square meters of floor space plus a living room. Each waiting room must contain at least 20 square meters to accommodate handwashing, gowning, and storage. If toilets are provided, should be private. A key arrest / cardiac emergency alarm should be present on each side of the bed in the ICU. Automatic alarm should sound at the hospital telecommunications center, central nursing station, ICU conference room, staff lounge, and every on-call room. The origin of this alarm should be visible. Space and surfaces for computer terminals and charting the patient should be incorporated into the design of each patient module as indicated. Storage should be provided for the personal belongings of each patient, patient care supplies, linen and toiletries. Locking drawers and cabinets should be used if the syringe and the drugs are stored at the bedside. Personal valuables should not be kept in the ICU. Instead, it must be held by the Security Hospital until patient discharge. Every effort should be made to provide an environment that reduces stress on patients and staff. Therefore, the design should consider natural lighting and view. Windows is an important aspect of sensory orientation, and as much room as possible should have a window to strengthen the afternoon / evening orientation. Curtains or shades of flame resistant fabrics can create attractive window coverings and serves to absorb the sound. Window treatments should be durable and easy to clean, and a schedule for cleaning them should be established. If the blinds or shades not a viable option, considering the use of exterior overhangs, louvers, or colored or reflective glass to control lighting levels. If the window can not be provided in every room, an alternative option is to allow distant views of the outside windows or skylights. The incremental approach to improving sensory orientation to the patient may include the provision of a clock, calendar, bulletin board, and / or a pillow speaker connected to radio and television. Television should be out of the reach of patients and operated by remote control. If possible, telephone service should be provided in every room. Consideration convenience should include methods to set privacy for patients. Shades, blinds, curtains and doors should control patient contact with his / her surroundings. A supply of portable folding chairs or to be provided to enable a family visit at the bedside. One consideration is the selection of the added convenience of a color scheme for the room, which should promote rest and have a calming effect. To provide for visual interest, one or more walls in view of the patient can be selected to accent the color, texture design, graphic or image
engineers and designers must strive deinstitutionalize patient care areas as much as possible.

Utilities
Each intensive care unit must have electrical power, water, oxygen, compressed air, vacuum, lighting, and environmental control systems that support the needs of patients and a team of critical care under normal circumstances and emergency, and it must meet or exceed code regulatory bodies and accreditation and standards. A utility column (it gratis stand, ceiling mount, or floor mounted) is the preferred source of electrical power, oxygen, compressed air and vacuum, and must contain the controls for temperature and lighting. When appropriately placed, utilities column allows easy access to the patient's head to facilitate emergency airway management if necessary. If the utility column is not feasible, utility services may be provided on the head wall. Note: Technical codes, standards and regulations for hospital systems and utilities environment changing at a constant. It is important to contact the regulatory agencies and accreditation for up-to-date information before ICU designs completed.

Electrical Power.
Electric service to each ICU should be provided by a separate supplier connected to the main circuit breaker panel that serves the branch circuit in the ICU. The main panel should also be connected to the emergency power source that will quickly re-supply of electricity in case of power failures. Each outlet outlet or cluster in an ICU should be served by its own circuit breaker in the main panel. It is important that the ICU staff have easy access to the main panel in case of power must be disconnected for emergency power. Grounded 220VAC volt electrical outlet with a 30 amp circuit breaker must be placed within a few meters of each patient bed. Sixteen outlet per bed as desired. Outlet at the head of the bed should be placed about 36 inches above the floor to facilitate connections, and to prevent disconnection by pulling the power cord rather than the plug. Outlet on the side and foot of the bed should be placed close to the floor to avoid tripping over the power cord.

water supply
The water supply must be from a certified source, especially if hemodialysis is to be done. Stop valves must be installed on the pipe zone ICU admission each to enable this service is disabled should line breaks occur. Washing hands is deep and wide enough to prevent splashing sink, should be equipped with elbow, knee, foot, or sonar operated valves, should be available near the entrance to the patient module, or between any two patients on the ward-type unit. It is an essential component of general infection control measures. When the toilet is included in the module of patients, should be equipped with a bedpan cleaning equipment, including hot and cold water supply and spray heads with a foot control. In addition, when the restrooms are present, environmental control systems must be changed (see below).

Oxygen
Compressed Air and Vacuum central oxygen supplied. And compressed air must be provided at 50 to 55 psi of primary and backup tank, and the installation must follow the NFPA standard (24). At least two outlets per patient required oxygen. A compressed air outlet per bed is required; two desired. Connections for oxygen and compressed air outlet should happen by the spark plug to prevent accidental interchanging excited gas. Audible and visible alarm low and high pressure must be installed properly in each ICU and in the engineering field hospital. Guidelines shut-off valves must be found and identified in both areas to permit the supply disruptions in case of fire, excessive pressure, or for the purpose of improvement. Outlet vacuum least three per bed required. The vacuum system must maintain a minimum of 290 mm Hg vacuum at the outlet farthest from the vacuum pump. Audible and visual alarms should show a decrease in vacuum below 194 mm Hg.

Exposure
Overhead costs plus general illumination light from the surroundings should be adequate for routine nursing tasks, including charting, but it creates a soft lighting environment for patient comfort. Total exposure should not exceed 30 foot-candles (fc). It is better to put the lighting control on a variable-control dimmer is located just outside the room. This allows a change in lighting at night from outside the room, memungkinkanminimal sleep disturbances during the observation of the patient. Night lighting should not exceed 6.5 fc for continuous use or 19 fc for short periods. Separate lighting for emergencies and procedures to be placed in the ceiling directly above the patient and should be fully illuminate the patient with at least 150 fc shadow-free. A patient's desired reading lamp, and should be installed so it will not interfere with the operation of the bed or monitoring equipment. The lighting of the reading light should not exceed 30 fc.

Environmental Control Systems
Suitable and safe air quality must be maintained at all times. A minimum of six air changes per hour total per room is required, with two air changes per hour comprised of outside air. For room has a toilet, toilet exhaust required 75 cubic feet per minute should be composed of outside air. Central air conditioning systems and recirculated air must pass through the appropriate filter. Air- conditioning and heating should be given with an emphasis on patient comfort. For critical care units have closed patient module, the temperature must be set in each module.

physiological monitoring
Each module patients should monitor capabilities that include analysis and display one or more electrocardiographic leads, at least three fluid pressure, and acts directly or indirectly from the arterial oxygen levels. It should be displayed both in analog and digital format by providing a visual waveform and interpretation of numerical rate, and the values ​​of maximum / minimum and average accordingly. Each monitoring system should have the ability to record on paper at least two analog waveforms simultaneously in dual channel format. This does not happen at the bedside. Alarms should indicate critical values ​​by means of both audible and visual. Alarms must be easily audible and non-defeatable. Bedside monitoring equipment should be located to allow easy access and viewing, and must not interfere with visualization or access to the patient. Bedside nurse and / or monitor technician must be able to observe the status of each patient be monitored at a glance. This objective can be achieved either by a central monitoring station, or to a bedside monitor that allows the observation of more than one patient simultaneously. It should be noted that neither of these methods is intended to replace bedside observation. Weight-bearing surface that supports the monitoring equipment should be sturdy enough to withstand high levels of strain over time. It must be assumed that the monitoring equipment will increase the volume from time to time. Therefore, space and power facilities should be designed accordingly.

Electrocardiogram
One or more of lead electrocardiography should be displayed continuously. The level of computerization and waveform analysis must, at a minimum, recognize and alarm for asystole, ventricular tachycardia and fibrillation, and a preset maximum / minimum heart rate. Memory function to remember the arrhythmia been desired. Fluid pressure. Monitoring equipment must have the capacity for simultaneous pressure of two or more displays in analog format. In addition, maximum, minimum, and average values ​​should be displayed digitally. Alarms should indicate critical values ​​for the three parameters are digitally displayed.

breathing parameter
Each bedside station must have the ability to provide a continuous measure arterial oxygen levels. Pulse oximetry and transcutaneous p0 2 current measurements like oxygen monitoring modalities. End-tidal C0 2 or transcutaneous PC0 2 measurements can be used for monitoring carbon dioxide required. Monitoring of respiratory rate should be available for patients at risk for apnea.

Miscellaneous physiological parameters
The new monitoring system has the ability to record and display the temperature, respiratory rate, ST segment amplitude, non-invasive cardiac output, mixed venous oksigensaturasi, continuous EEG physiological parameters, and more. These parameters can be added to the monitoring capabilities required. Cardiac output and derived variables. Measurement bedside thermodilution cardiac output, and the availability of mathematical indices derived from the performance of hemodynamic and respiratory, has become almost universal in the ICU. It is felt by the practitioner care is most important to be a very valuable tool for patient management. The ability to provide these functions is strongly encouraged.

Computerized Charting Charting patients
Computerization is becoming increasingly popular in the ICU. This system provides data "paperless" management, order entry, and nurse and physician charting. If and when a decision is made to take advantage of this technology, it is important to fully integrate the system with all the activities of the ICU. Bedside Terminal facilitate patient management by enabling nurses and physicians to remain at the bedside during the process of charting. To minimize errors, monitored data can be saved automatically. In addition, when the system is properly connected to the existing hospital data systems, data retrieval (lab results, x-ray reports, etc.) can be done at the bedside. Remote data transmission capabilities (for the office, on-call room, etc.) desired to facilitate continuity in patient management. All ICU socially sound system must have a social system that provides a sound relationship between the central nursing station, patient modules, physician on-call rooms, conference rooms, and a staff lounge. Supply area and visitors lounge / reception area can also be included in the system. Where appropriate, the relationship to the main departments such as blood bank, pharmacy and clinical laboratory should be included. Some types of communications, such as personnel tracking and non-emergency calls, can best be achieved by using visual displays (eg numeric or color-coded lights) that eliminate unnecessary noise. In addition to standard telephone service to each ICU, which should provide a hospital-wide and external communication, there must be a mechanism for internal and external emergency communications when normal systems fail (eg during a power failure).

Laboratory
All ICUs must have available a 24-hour service clinical laboratory. When the service can not be provided by the central hospital labs, satellite labs within or adjacent to the ICU (s) must serve this function. Satellite facility must be able to provide minimum chemistry and hematology tests, including arterial blood gas analysis.

Physician On-Call Room
When in-house physician services provided on the basis of a 24-hour, on-call rooms should be available close to the ICU (s). Toilet and shower facilities should be provided. On-call rooms should be linked to the ICU (s) via telephone and / or socially sound system. In addition, cardiac arrest / emergency alarm should sound in the room.

Office administration
It is often desirable to have office space available adjacent to the ICU (s) for medical and nursing management and administrative personnel. These offices should be large enough to allow meetings and consultations with the ICU team members and / or the patient's family. Additional office space may be allocated to the development of staff personnel, clinical specialists, and social services, as applicable. The ability to put people near a May ICU facilitates an integrated team approach and broad-based to patient management.

Senin, 21 Maret 2016

What Is Mechanical Ventilation?

Mechanical ventilation, in the healthcare setting or home, helps patients breathe by assisting the inhalation of oxygen into the lungs and the exhalation of carbon dioxide. Depending on the patient’s condition, mechanical ventilation can help support or completely control breathing.

Essential information about ventilators:

Ventilator terms »
Rate, volume, sensitivity, flow, limits and measures of breathing
Settings »
The clinician determines appropriate ventilator settings according to the condition and needs of the patient
Modes »
Ventilators offer a variety of modes that determine how and when breath is delivered to the patient
Alarms »
Audible or visual alarms help monitor ventilator function and settings
Ventilation terms

Discussions about ventilation use the following terms:

Rate of breaths

Also referred to as respiratory rate, breathing rate, or frequency; can be a ventilator setting or respiratory status the ventilator tracks as the patient breathes

Volume of breaths

Usually expressed in milliliters (mL); frequently referred to as tidal volume or “VT”; can be a ventilator setting or respiratory status the ventilator tracks as the patient breathes

Sensitivity of breathing

Concerns how much inspiratory or “trigger” effort is required from the ventilator to recognize that the patient is trying to inhale; this can refer to a ventilator setting, but can also be used to describe the ventilator’s responsiveness to the patient’s breathing effort

Flow of breaths

Also referred to as peak flow or inspiratory flow; usually describes a ventilator setting but can be respiratory status the ventilator tracks as the patient breathes

Controls or limits on breathing volume, pressure or time

The ventilator can limit or control the inspiratory pressure, volume or time during breath delivery

Measured or mandatory breaths

Also referred to as mechanical breaths, describes breaths initiated by the ventilator delivered according to a consistent volume or pressure

Lung compliance and airway resistance

Lung compliance refers to the elasticity, stretch or ease with which the lung expands to receive volume

Airway resistance refers to the resistance encountered as oxygen enters the airway and to how easily the lung lets in air

Back to top
Ventilator settings

The clinician determines appropriate ventilator settings according to the condition and needs of the patient. The settings include:

FIO 2

The measure of oxygen the ventilator is delivering during inspiration.

Rate

The number of breaths delivered by the ventilator per minute.

Tidal volume

The volume of gas/air delivered with each breath.

Sensitivity

This alerts the ventilator when to recognize the start of a patient’s spontaneous breath (or breathing effort). When the ventilator recognizes the patient’s effort, it triggers a response, either to provide a mechanical breath or to support a spontaneous one.

Peak flow

The flow of gas/air (flow rate) used to deliver each mechanical breath to the patient.

Inspiratory and expiratory times

The total time required for one complete respiratory cycle. Typically, patients are comfortable with an expiratory time two to three times longer than the inspiratory time.

Cycling

The manner in which the ventilator ends the inspiratory phase of the breath and allows the patient to exhale. Ventilator breaths can be volume cycled, time cycled or flow cycled.

Limit

This setting restricts the volume, pressure or time air is delivered to the patient during the inspiratory phase.

Back to top
Ventilator modes


View larger
Ventilator manufacturers offer combinations of modes and breath types that characterize how and when a breath is delivered to the patient.

Ventilator modes most commonly found on the home care ventilator include:

Assist/control (A/C)

All breaths delivered by the ventilator will control either volume or pressure. The ventilator delivers the same measured breath every time, whether the breath is patient initiated or ventilator initiated, based on the rate setting.

Continuous positive airway pressure ventilation (CPAP)

All breathing is initiated and sustained by the patient. The ventilator delivers no machine (mandatory) breaths. The ventilator controls the delivered oxygen concentration and delivers as much flow and volume as necessary to meet the patient’s inspiratory demands. The patient decides the tidal volume and number of spontaneous breaths.

This mode also allows the patient to breathe at a continuous, elevated airway pressure that can improve oxygenation (see PEEP/CPAP).

The ventilator can also apply positive pressure during spontaneous inspirations taken during CPAP mode to reduce the patient’s work to breathe.

Synchronized intermittent mandatory ventilation (SIMV)

The ventilator synchronizes machine breath delivery with the patient’s spontaneous breath efforts. This mode is a combination of set mandatory machine breaths synchronized with the patient’s own spontaneous breaths.

Pressure control ventilation (PCV or PC)

This is a type of mandatory breath that can be used in either A/C or SIMV modes and targets a specific pressure during inspiration. The delivered flow rate varies according to the patient’s demand and own lung characteristics, such as lung compliance and airway resistance. The delivered tidal volume also varies with changes in compliance and resistance. In PC mode, the clinician also sets a specific time for inspiration or inspiratory time.

Pressure support ventilation (PSV or PS)

This is a type of spontaneous breath that can be used in either CPAP or SIMV modes and targets a set inspiratory pressure, much like PC. But the PS inspiration ends as the lung gets full and the delivered flow decreases to a specific valve set by the clinician. The patient decides the respiratory rate and inspiratory time as well as the flow rate and tidal volume.

Positive end expiratory pressure (PEEP)

Mechanical positive pressure is applied at the end of exhalation to prevent the lungs from emptying completely and returning to a “zero” reading. The benefit of positive pressure at the end of exhalation is increased lung volume for improved oxygenation.

Back to top
Ventilator alarms


View larger
Ventilators offer audible and visual alarms to alert the caregiver to changes in key patient and ventilator functions and settings. These alarms prompt a timely response, safeguarding the patient and proper functioning of the ventilator. Note: It is critical that whenever an alarm occurs, the caregiver evaluates the patient first before checking the ventilator.

High airway pressure alarms

These are also referred to as high inspiratory pressure (HIP) alarms. This alarm setting also provides a pressure limit function.

If the ventilator pressure reaches the set limit, an audible or visual alarm activates. The ventilator will temporarily stop the inspiration, allowing the patient to exhale immediately.

The alarm detects abnormally high inspiratory pressure and may activate in response to:

Kinks in the patient circuit or tracheostomy tube
Water in the ventilator circuit
Increased mucus or other secretions blocking the airway
Bronchospasm, or narrowing of the patient’s airway
Coughing, gagging or “fighting” the ventilator breath
Pneumonia or other changes in lung condition that affect airway resistance or lung compliance
After determining the condition that triggered the alarm, do whatever is needed to fix the situation, which could be suctioning the patient, repositioning the tube or adjusting the alarm settings. If the patient’s condition has worsened because of pneumonia or other illness, contact the physician promptly.

Low airway pressure alarms

These are also referred to as low inspiratory pressure (LIP) alarms.

These alarms are in response to:

Decrease in lung pressure due to a change in lung or patient condition
Increase in patient demand for oxygen because of agitation, pain or discomfort
Change in lung compliance or airway resistance
Low pressure alarms can also activate if there’s an air leak out of the breathing circuit caused by:

Patient-ventilator disconnection
Improper inflation of the tracheostomy tube cuff
Poorly fitting noninvasive nose masks or prongs
Loose circuit and tubing connections
Water condensate in the circuit
High and low rate alarms

A low or high rate alarm will trigger an audible and/or visual alert. An agitated or fatigued patient can have an increase in respiratory rate. Sedated patients or patients with impaired neuromuscular function can have a decreased respiratory rate.

High and low volume alarms

In addition to a high respiratory rate, high volume alarms may indicate increased patient demand for gas/air because of pain, anxiety or improper ventilator settings.

Low volume alarms are typically caused by air leaks. In pressure-based ventilation, these alarms may indicate worsening airway resistance or lung compliance.

What is Vital Signs Monitor ?

Vital signs (often shortened to just vitals) are a group of the 4 to 6 most important signs that indicate the status of the body’s vital (life-sustaining) functions. These measurements are taken to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery.[1][2] The normal ranges for a person’s vital signs vary with age, weight, gender, and overall health.[3]

There are four primary vital signs: body temperature, blood pressure, pulse (heart rate), and breathing rate (respiratory rate), often notated as BT, BP, HR, and RR. However, depending on the clinical setting, the vital signs may include other measurements called the "fifth vital sign" or "sixth vital sign". Vital signs are recorded using the LOINC internationally-accepted standard coding system.[4][5]

Early warning scores have been proposed that combine the individual values of vital signs into a single score. This was done in recognition that deteriorating vital signs often precede cardiac arrest and/or admission to the intensive care unit. Used appropriately, a rapid response team can assess and treat a deteriorating patient and prevent adverse outcomes.[6][7][8]

Primary vital signs[edit]
There are four primary vital signs which are standard in most medical settings:

Body temperature
Heart Rate or Pulse
Respiratory rate
Blood pressure
The equipment needed is a thermometer, a sphygmomanometer, and a watch. Though a pulse can be taken by hand, a stethoscope may be required for a patient with a very weak pulse.

Temperature[edit]
Temperature recording gives an indication of core body temperature which is normally tightly controlled (thermoregulation) as it affects the rate of chemical reactions.

Temperature can be recorded in order to establish a baseline for the individual's normal body temperature for the site and measuring conditions. The main reason for checking body temperature is to solicit any signs of systemic infection or inflammation in the presence of a fever (temp > 38.5 °C/101.3 °F or sustained temp > 38 °C/100.4 °F), or elevated significantly above the individual's normal temperature. Other causes of elevated temperature include hyperthermia.

Temperature depression (hypothermia) also needs to be evaluated. It is also noteworthy to review the trend of the patient's temperature. A patient with a fever of 38 °C does not necessarily indicate an ominous sign if his previous temperature has been higher. Body temperature is maintained through a balance of the heat produced by the body and the heat lost from the body.

Temperature is commonly considered to be a vital sign most notably in a hospital setting. EMTs (Emergency Medical Technicians), in particular, are taught to measure the vital signs of: respiration, pulse, skin, pupils, and blood pressure as "the 5 vital signs" in a non-hospital setting.[9]

Pulse[edit]
Main article: Pulse
The pulse or heart rate is the rate at which the heart beats while pumping blood through the arteries. Its rate is usually measured either at the wrist or the ankle and is recorded as beats per minute. The pulse commonly taken is from the radial artery at the wrist. Sometimes the pulse cannot be taken at the wrist and is taken at the elbow (brachial artery), at the neck against the carotid artery (carotid pulse), behind the knee (popliteal artery), or in the foot dorsalis pedis or posterior tibial arteries. The pulse rate can also be measured by listening directly to the heartbeat using a stethoscope. The pulse varies with age. A newborn or infant can have a heart rate of about 130–150 beats per minute. A toddler's heart will beat about 100–120 times per minute, an older child's heartbeat is around 60–100 beats per minute, adolescents around 80–100 beats per minute, and adults' pulse rate is anywhere between 50 and 80 beats per minute.

Respiratory rate[edit]
Main article: Respiratory rate
Varies with age, but the normal reference range for an adult is 16–20 breaths/minute (RCP 2012). The value of respiratory rate as an indicator of potential respiratory dysfunction has been investigated but findings suggest it is of limited value. Respiratory rate is a clear indicator of acidotic states, as the main function of respiration is removal of CO2 leaving bicarbonate base in circulation.

Blood pressure[edit]
Main article: Blood pressure § Measurement
The blood pressure is recorded as two readings: a high systolic pressure, which occurs during the maximal contraction of the heart, and the lower diastolic or resting pressure. A normal blood pressure would be 120 being the systolic over 80, the diastolic. Usually the blood pressure is read from the left arm unless there is some damage to the arm. The difference between the systolic and diastolic pressure is called the pulse pressure. The measurement of these pressures is now usually done with an aneroid or electronic sphygmomanometer. The classic measurement device is a mercury sphygmomanometer, using a column of mercury measured off in millimeters. In the United States and UK, the common form is millimeters of mercury, whilst elsewhere SI units of pressure are used. There is no natural 'normal' value for blood pressure, but rather a range of values that on increasing are associated with increased risks. The guideline acceptable reading also takes into account other co-factors for disease. Therefore, elevated blood pressure (hypertension) is variously defined when the systolic number is persistently over 140–160 mmHg. Low blood pressure is hypotension. Blood pressures are also taken at other portions of the extremities. These pressures are called segmental blood pressures and are used to evaluate blockage or arterial occlusion in a limb (see Ankle brachial pressure index).

Additional signs[edit]
In the U.S., in addition to the above four, it is required to record the patients Height, Weight, and Body Mass Index.[10]

Fifth vital signs[edit]
The "fifth vital sign" may refer to a few different parameters.

Pain is considered a standard fifth vital sign in some organizations such as the U.S. Veterans Affairs.[11] Pain is measured on a pain scale based on subjective patient reporting and may be unreliable.[12] Some studies show that recording pain routinely may not change management.[13][14][15] Other "fifth vital signs" include:
Menstrual cycle [16][17]
Glasgow Coma Scale [18]
Pulse Oximetry [19][20][21]
Blood Glucose level [22]
Sixth vital signs[edit]
There is no standard "sixth vital sign"; its use is more informal and discipline-dependent than the above.

End-tidal CO2.[23][18]
Functional status[24]
Shortness of breath[25]
Gait speed[26]

What is Anaesthetic Machine

The anaesthetic machine (UK English) or anesthesia machine (US English) or Boyle's machine is used by anaesthesiologists, nurse anaesthetists, and anaesthesiologist assistants to support the administration of anaesthesia. The most common type of anaesthetic machine in use in the developed world is the continuous-flow anaesthetic machine, which is designed to provide an accurate and continuous supply of medical gases (such as oxygen and nitrous oxide), mixed with an accurate concentration of anaesthetic vapour (such as isoflurane), and deliver this to the patient at a safe pressure and flow. Modern machines incorporate a ventilator, suction unit, and patient monitoring devices.

The original concept of Boyle's machine was invented by the British anaesthetist Henry Boyle (1875–1941) in 1917. Prior to this time, anaesthetists often carried all their equipment with them, but the development of heavy, bulky cylinder storage and increasingly elaborate airway equipment meant that this was no longer practical for most circumstances. The anaesthetic machine is usually mounted on anti-static wheels for convenient transportation.

Simpler anaesthetic apparatus may be used in special circumstances, such as the TriService Apparatus, a simplified anaesthesia delivery system invented for the British armed forces, which is light and portable and may be used effectively even when no medical gases are available. This device has unidirectional valves which suck in ambient air which can be enriched with oxygen from a cylinder, with the help of a set of bellows. A large number of draw-over type of anaesthesia devices are still in use in India for administering an air-ether mixture to the patient, which can be enriched with oxygen. But the advent of the cautery has sounded the death knell to this device, due to the explosion hazard.

Many of the early innovations in U.S. anaesthetic equipment, including the closed circuit carbon-dioxide absorber (aka: the Guedel-Foregger Midget) and diffusion of such equipment to anaesthetists within the United States can be attributed to Richard von Foregger and The Foregger Company.

In dentistry a simplified version of the anaesthetic machine, without a ventilator or anaesthetic vaporiser, is referred to as a relative analgesia machine. By using this machine, the dentist can administer a mild inhalation sedation with nitrous oxide and oxygen, in order to keep his patient in a conscious state while depressing the feeling of pain.

Simple schematic of an anaesthesia machine
A modern anaesthesia machine includes the following components:

Connections to piped hospital oxygen, medical air, and nitrous oxide.
Reserve gas cylinders of oxygen, air, and nitrous oxide attached via a specific yoke with a Bodok seal.
A high-flow oxygen flush which provides pure oxygen at 30-75 litres/minute
Pressure gauges, regulators and 'pop-off' valves, to protect the machine components and patient from high-pressure gases
Flow meters (rotameters) for oxygen, air, and nitrous oxide, low Flow meters oxygen nitrous oxide
Updated vaporizers to provide accurate dosage control when using volatile anaesthetics such as isoflurane and sevoflurane
An integrated ventilator to properly ventilate the patient during administration of anaesthesia
A manual ventilation bag in combination with an Adjustable Pressure Limiting (APL) valve
Systems for monitoring the gases being administered to, and exhaled by the patient
Systems for monitoring the patient's heart rate, ECG, blood pressure and oxygen saturation, in some cases with additional options for monitoring end-tidal carbon dioxide and temperature
breathing circuits, circle attachment, or a Bain's breathing system
Safety features of modern machines[edit]
Based on experience gained from analysis of mishaps, the modern anaesthetic machine incorporates several safety devices, including:

an oxygen failure alarm (aka 'Oxygen Failure Warning Device' or OFWD). In older machines this was a pneumatic device called a Ritchie whistle which sounds when oxygen pressure is 38 psi descending. Newer machines have an electronic sensor.
Nitrous cut-off or oxygen failure protection device, OFPD: the flow of medical nitrous-oxide is dependent on oxygen pressure. This is done at the regulator level. In essence, the nitrous-oxide regulator is a 'slave' of the oxygen regulator. i.e., if oxygen pressure is lost then the other gases can not flow past their regulators.
hypoxic-mixture alarms (hypoxy guards or ratio controllers) to prevent gas mixtures which contain less than 21-25% oxygen being delivered to the patient. In modern machines it is impossible to deliver 100% nitrous oxide (or any hypoxic mixture) to the patient to breathe. Oxygen is automatically added to the fresh gas flow even if the anaesthetist should attempt to deliver 100% nitrous oxide. Ratio controllers usually operate on the pneumatic principle or are chain linked (link 25 system). Both are located on the rotameter assembly, unless electronically controlled.
ventilator alarms, which warn of low or high airway pressures.
interlocks between the vaporizers preventing inadvertent administration of more than one volatile agent concurrently
alarms on all the above physiological monitors
the Pin Index Safety System prevents cylinders being accidentally connected to the wrong yoke
the NIST (Non-Interchangeable Screw Thread) or Diameter Index Safety System, DISS system for pipeline gases, which prevents piped gases from the wall being accidentally connected to the wrong inlet on the machine
pipeline gas hoses have non-interchangeable Schrader valve connectors, which prevents hoses being accidentally plugged into the wrong wall socket
The functions of the machine should be checked at the beginning of every operating list in a "cockpit-drill". Machines and associated equipment must be maintained and serviced regularly.

Older machines may lack some of the safety features and refinements present on newer machines. However, they were designed to be operated without mains electricity, using compressed gas power for the ventilator and suction apparatus. Modern machines often have battery backup, but may fail when this becomes depleted.

The modern anaesthetic machine still retains all the key working principles of the Boyle's machine (a British Oxygen Company trade name) in honour of the British anaesthetist Henry Boyle. In India, however, the trade name 'Boyle' is registered with Boyle HealthCare Pvt. Ltd., Indore MP.

A two-person pre-use check (consisting of an anaesthetist and an operating department practitioner) of the anaesthetic machine is recommended before every single case and has been shown to decrease the risk of 24-hour severe postoperative morbidity and mortality.[1] Various regulatory and professional bodies have formulated checklists for different countries.[2] A free transparent reality simulation of the checklist recommended by the United States Food & Drug Administration is available from the Virtual Anesthesia Machine web site ( see below) after registration which is also free. Machines should be cleaned between cases as they are at considerable risk of contamination with pathogens.[3]

An anaesthetic machine
The Anesthesia machine contains mechanical respiratory support (ventilator) and O2 support as well as being a means for administering anesthetic gases which may be used for sedation as well as total anesthesia. An anesthesia cart holds extra IV push meds for anesthesia, sedation and reversal, extra equipment that the person giving anesthesia/sedation might need, and the hardware for respiratory support and resuscitation.

Rabu, 09 Maret 2016

Apa itu Disposable Rumah Sakit ?

Medis & Hygiene produkPakai adalah kata sifat yang berarti kemampuan sesuatu untuk dibuang atau dibuang setelah digunakan. Banyak orang sekarang menggunakan istilah sebagai kata benda, yaitu "sekali pakai" tetapi dalam kenyataannya ini masih kata sifat sebagai kata benda (produk, popok, dll) tersirat. pendapatan adalah jumlah uang yang tersisa dari gaji seseorang atau membayar pengeluaran, tabungan atau apa pun, setelah semua biaya hidup telah dibawa keluar. Sebuah pakai (juga disebut produk sekali pakai) adalah produk yang dirancang untuk penggunaan tunggal setelah itu didaur ulang atau dibuang sebagai limbah padat. Istilah sering menyiratkan murahnya dan kenyamanan jangka pendek daripada menengah ke daya tahan jangka panjang. Istilah ini juga kadang-kadang digunakan untuk produk yang dapat berlangsung bulan beberapa (misalnya filter udara pakai) untuk membedakan dari produk sejenis yang berlangsung tanpa batas waktu (misalnya filter udara bisa dicuci). Kata "sekali pakai" tidak harus bingung dengan kata "habis" yang banyak digunakan dalam dunia mekanik. Dalam pengelasan misalnya, pengelasan batang, tips, nozel, gas, dll dianggap "habis" karena mereka hanya bertahan sejumlah waktu sebelum perlu diganti.produsen perangkat medis dan bedah di seluruh dunia menghasilkan banyak item yang dimaksudkan untuk satu penggunaan saja. Alasan utama adalah pengendalian infeksi; ketika item hanya digunakan sekali tidak dapat mengirimkan agen infeksius untuk pasien berikutnya. Produsen semua jenis perangkat medis diwajibkan untuk mematuhi berbagai standar dan peraturan. ISO 15223: Alat Kesehatan dan EN 980 mengutip bahwa instrumen digunakan tunggal atau perangkat diberi label seperti pada kemasan mereka dengan simbol yang diakui secara universal untuk menunjukkan "tidak digunakan kembali," "pakai," atau "menggunakan hanya sekali". Simbol ini adalah angka 2, dalam sebuah lingkaran dengan garis 45 ° melalui itu.Contoh penggunaan item tunggal meliputi:
    
jarum suntik
    
Tisu toilet
    
Kondom dan produk kontrasepsi lainnya
    
enema sekali pakai dan produk sejenis
    
penyeka kapas dan bantalan
    
Medis dan membersihkan sarung tangan
    
Popok bayi dan dewasa, dan celana training
    
Mencukur pisau cukur, kit waxing, sisir, dan produk kontrol rambut lainnya
    
Sikat gigi, benang gigi, dan produk perawatan mulut lainnya
    
celemek rumah sakit
    
celana sekali pakai di postpartum
    
Lensa kontak

What is Disposable ?

Medical & Hygiene products
Disposable is an adjective meaning the ability of something to be disposed of or thrown away after use. Many people now use the term as a noun, i.e. "a disposable" but in reality this is still an adjective as the noun (product, nappy, etc.) is implied. Disposable income is the amount of money left over from one's salary or pay for spending, saving or whatever, after all living costs have been taken out. A disposable (also called disposable product) is a product designed for a single use after which it is recycled or is disposed as solid waste. The term often implies cheapness and short-term convenience rather than medium to long-term durability. The term is also sometimes used for products that may last several months (e.g. disposable air filters) to distinguish from similar products that last indefinitely (e.g. washable air filters). The word "disposables" is not to be confused with the word "consumables" which is widely used in the mechanical world. In welding for example, welding rods, tips, nozzles, gas, etc. are considered to be "consumables" as they only last a certain amount of time before needing to be replaced.
Medical and surgical device manufacturers worldwide produce a multitude of items that are intended for one use only. The primary reason is infection control; when an item is used only once it cannot transmit infectious agents to subsequent patients. Manufacturers of any type of medical device are obliged to abide by numerous standards and regulations. ISO 15223: Medical Devices and EN 980 cite that single use instruments or devices be labelled as such on their packaging with a universally recognized symbol to denote "do not re-use," "single use," or "use only once". This symbol is the numeral 2, within a circle with a 45° line through it.

Examples of single use items include:
    Hypodermic needles
    Toilet paper
    Condoms and other contraception products
    Disposable enemas and similar products
    Cotton swabs and pads
    Medical and cleaning gloves
    Baby and adult diapers, and training pants
    Shaving razors, waxing kits, combs, and other hair control products
    Toothbrushes, dental floss, and other oral care products
    Hospital aprons
    Disposable panties in postpartum
    Contact lenses

Apa itu Alkes Durable ?

Tahan lama Peralatan Medis (DME) adalah peralatan yang memberikan manfaat terapi untuk pasien yang membutuhkan karena kondisi medis tertentu dan / atau penyakit. Tahan lama Peralatan Medis (DME) terdiri dari item yang:
  • terutama dan lazim digunakan untuk melayani tujuan medis;
  • tidak berguna untuk orang dengan tidak adanya penyakit, cacat, atau cedera;
  • dipesan atau diresepkan oleh dokter;
  • dapat digunakan kembali;
  • tahan penggunaan berulang, dan
  • sesuai untuk digunakan di rumah.

kriteria yang sama yang digunakan oleh Medicare dan Medicaid.

    
Istilah "peralatan medis yang tahan lama" termasuk paru-paru besi, tenda oksigen, Nebulizers, CPAP, kateter, transfer bangku, tempat tidur rumah sakit, pasien lift, transfer atau tandu kursi, dan kursi roda (yang mungkin termasuk kendaraan listrik yang dioperasikan yang dapat tepat digunakan sebagai kursi roda, tetapi hanya apabila penggunaan kendaraan tersebut bertekad untuk menjadi yang diperlukan atas dasar kondisi medis dan fisik individu dan kendaraan memenuhi persyaratan keselamatan seperti Sekretaris mungkin meresepkan) digunakan di rumah pasien (termasuk institusi digunakan sebagai rumahnya selain lembaga yang memenuhi persyaratan ayat dari bagian ini atau bagian tahun 1819, apakah dilengkapi secara sewa atau dibeli, dan termasuk strip darah-pengujian dan monitor glukosa darah bagi individu dengan diabetes tanpa memperhatikan apakah individu memiliki diabetes tipe I atau tipe II atau untuk penggunaan individu insulin (sebagaimana ditentukan di bawah standar yang ditetapkan oleh Sekretaris konsultasi dengan organisasi yang sesuai); kecuali bahwa istilah tersebut tidak termasuk peralatan seperti dilengkapi dengan pemasok yang telah digunakan, untuk demonstrasi dan penggunaan peralatan khusus, seorang individu yang belum memenuhi standar pelatihan minimum seperti Sekretaris dapat membentuk sehubungan dengan demonstrasi dan penggunaan seperti peralatan khusus. Sehubungan dengan kursi kursi-angkat, istilah tersebut hanya mencakup mekanisme kursi-lift dan tidak termasuk kursi.

Durable Medical Equipment

Durable Medical Equipment (DME) is any equipment that provides therapeutic benefits to a patient in need because of certain medical conditions and/or illnesses. Durable Medical Equipment (DME) consists of items which:
  • are primarily and customarily used to serve a medical purpose;
  • are not useful to a person in the absence of illness, disability, or injury;
  • are ordered or prescribed by a physician;
  • are reusable;
  • can stand repeated use, and
  • are appropriate for use in the home.
Similar criteria are used by Medicare and Medicaid.

The term "durable medical equipment" includes iron lungs, oxygen tents, Nebulizers, CPAP, catheters, transfer benches, hospital beds, Patient lifts, transfer or stretcher chairs, and wheelchairs (which may include a power-operated vehicle that may be appropriately used as a wheelchair, but only where the use of such a vehicle is determined to be necessary on the basis of the individual's medical and physical condition and the vehicle meets such safety requirements as the Secretary may prescribe) used in the patient's home (including an institution used as his home other than an institution that meets the requirements of subsection of this section or section 1819, whether furnished on a rental basis or purchased, and includes blood-testing strips and blood glucose monitors for individuals with diabetes without regard to whether the individual has Type I or Type II diabetes or to the individual's use of insulin (as determined under standards established by the Secretary in consultation with the appropriate organizations); except that such term does not include such equipment furnished by a supplier who has used, for the demonstration and use of specific equipment, an individual who has not met such minimum training standards as the Secretary may establish with respect to the demonstration and use of such specific equipment. With respect to a seat-lift chair, such term includes only the seat-lift mechanism and does not include the chair.

Apa itu Electromedis ?

"Singkatnya, electromedicine dalam berbagai bentuk dengan cepat menjadi salah satu yang aman primer, perawatan berkhasiat dan efektif biaya pilihan saat kita memasuki abad ke-21."
Seperti dalam terapi apapun harap dicatat:
"Stimulasi listrik yang dimaksudkan untuk mempengaruhi perubahan di mana saja di tubuh hanya dapat berhasil jika nutrisi yang diperlukan tersedia ketika pengobatan diterapkan. Misalnya, para peneliti percaya bahwa CES membantu memulihkan pecandu dengan merangsang otak untuk membuat lebih banyak endorfin, tetapi ini hanya dapat diproduksi jika asam amino yang diperlukan dan nutrisi lain yang hadir dalam makanan dan dalam bentuk yang tersedia. Demikian pula, stimulasi mikro dari jaringan yang rusak tidak bisa menghasut, atau mempotensiasi tingkat perbaikan tubuh jika nutrisi yang diperlukan tidak tersedia di situs rusak, penyembuh tulang seperti elektromagnetik tidak bisa diharapkan untuk menjadi sukses jika tidak cukup kalsium tersedia patah di situs, antara banyak nutrisi lain yang diperlukan. "
Dalam kecanduan meningkatkan dan / atau mengubah diet seseorang harus juga, mencari, dan menemukan penyebab penderitaan dan menghapusnya - atau kesembuhan yang permanen tidak mungkin.
Chris Gupta

Oleh Ray B. Smith, Ph.D., M.P.A.
Sedangkan penggunaan listrik untuk penyembuhan kembali lebih dari 2.000 tahun, electromedicine ilmiah hanya berkembang dalam 50 tahun terakhir. Perawatan terbaru hanya melibatkan tingkat mikro stimulasi, sering cukup menit untuk bahkan tidak dirasakan oleh pasien yang sedang dirawat.
pengobatan Electrosleep, biasanya melibatkan kurang dari 1,5 milliampere intensitas, datang ke AS dari Jepang pada akhir tahun 1960, yang pada gilirannya telah meminjamnya dari Rusia dan negara-negara lain Blok Timur. Karena listrik itu berdenyut di kepala, FDA menamainya kranial stimulasi elektroterapi (CES) pada tahun 1978, dan sekarang memungkinkan pemasaran di AS untuk pengobatan kecemasan, depresi dan insomnia.
Sebuah penggunaan utama dari CES adalah pada sindrom pantang obat di mana orang yang menarik diri dari berbagai zat kecanduan, baik itu nikotin, alkohol, obat resep, kokain atau heroin. Kecemasan, depresi dan insomnia mendefinisikan gejala sindrom, dan pasien tersebut mendapatkan keuntungan secara dramatis dari penggunaan CES selama periode penarikan.
Transkutan electrical nerve stimulation (TENS), biasanya menggunakan arus yang kuat dari 60 milliamperes, datang di tempat kejadian di tahun 1970 berikut pengenalan Melzack dan Wall dari teori kontrol gerbang nyeri di mana stimulasi kontra efektif dapat menutup tulang belakang "gerbang" untuk perifer pesan nyeri mencoba untuk naik ke saluran tulang belakang-thalamic ke otak. perangkat mikro sekarang mencoba untuk mengubah atau menghilangkan pesan rasa sakit dengan menginduksi penyembuhan di lokasi nyeri, sebagai lawan untuk melayani sebagai counterirritant untuk menutup gerbang ke pesan menaik.
Setelah erat pada TENS adalah pendahuluan, pada 1980-an, perangkat tulang penyembuhan elektromagnetik yang digunakan untuk menyembuhkan patah tulang non-serikat. Untuk pertama kalinya ini memungkinkan kita untuk mencegah tragedi seperti itu dari Dr. Livingston, penemu Nil, yang tinggal final tiga puluh tahun hidupnya dengan fraktur sembuh dari lengan bahwa ia menderita gigitan singa.
Jadi dari awal yang lambat di paruh kedua abad ke-20, kami sekarang memiliki banyak FDA menyetujui perangkat listrik. Beberapa merangsang kontraksi otot sehingga orang dengan otot lumpuh dapat menjaga otot di tungkai yang tidak terpakai. penyandang cacat lainnya menggunakannya dalam belajar berjalan lagi, atau dalam mengembangkan keterampilan baru dalam menggunakan lengan atau tangan mereka, misalnya.
stimulator listrik saat ini sudah banyak ditanamkan dalam tubuh, seperti alat pacu jantung, stimulator listrik di berbagai bagian otak untuk mencegah hal-hal seperti tremor tangan atau kejang seluruh tubuh, dan stimulator kolom dorsal untuk melarang nyeri dari berbagai penyebab.
Kami telah memiliki elektroakupunktur sejak awal 1970-an ketika diperkenalkan dari Cina melalui Hong Kong. Salah satu inovasi terbaru di daerah ini adalah facelift elektroakupunktur yang menjadi semakin populer.
Kelompok Melzack kini telah berpusat pemikiran teoritis mereka pada neuromatrix sakit di otak yang dapat menembakkan pesan rasa sakit dengan tidak adanya rangsangan yang masuk dari tubuh. Hal ini dapat menjelaskan nyeri phantom limb dan mungkin memainkan peran dalam banyak jenis nyeri kronis seperti fibromyalgia dan nyeri tulang belakang kronis. Penelitian Alpha-Stim CES terbaru kami menunjukkan peningkatan dramatis dalam rasa sakit di berbagai bagian tubuh meskipun saat ini hanya diterapkan di kepala.
Dengan menggunakan teknologi Alpha-Stim dalam kombinasi rangsangan probe pada tubuh dekat situs nyeri, ditambah CES di kepala, survei terbaru dari 2.500 pasien menunjukkan bahwa 94% dari mereka yang menderita arthritis melaporkan peningkatan yang signifikan, seperti yang dilakukan 100% dari mereka menderita carpal tunnel syndrome, 94% dari mereka yang menderita sindrom kelelahan kronis, 93% dari mereka yang menderita sakit kronis di berbagai situs di tubuh mereka, 91% dari mereka yang menderita fibromyalgia, 98% dari mereka yang menderita sakit kepala migrain, 93% dari mereka yang menderita sakit punggung dan leher, dan 89% dari mereka yang menderita gangguan Temporomandibular (TMD).Studi terbaru lain dari 202 pasien sakit kronis diobati selama 30 menit atau kurang di beberapa klinik medis dengan probe mikro pada atau dekat lokasi nyeri pada tubuh, ditambah CES di kepala, menunjukkan bahwa rasa sakit mereka berkurang rata-rata 50% atau lebih, dan 17% sepenuhnya sakit gratis pada akhir masa pengobatan 30 menit. Hanya 12% tidak mengalami manfaat dari yang lamanya pengobatan. Rasa sakit berkisar dari kepala sampai kaki, dan tidak ada hubungan dapat ditemukan antara situs nyeri dan peningkatan persen. Menariknya, mereka yang telah kesakitan terpanjang menunjukkan keuntungan terbesar. Sementara tidak konsisten dengan intervensi farmasi, yang telah menjadi temuan berulang dalam studi CES sakit kronis.
stimulasi listrik yang dimaksudkan untuk mempengaruhi perubahan di mana saja di tubuh hanya dapat berhasil jika nutrisi yang diperlukan tersedia ketika pengobatan diterapkan. Misalnya, para peneliti percaya bahwa CES membantu memulihkan pecandu dengan merangsang otak untuk membuat lebih banyak endorfin, tetapi ini hanya bisa dihasilkan jika asam amino yang diperlukan dan nutrisi lain yang hadir dalam makanan dan dalam bentuk yang tersedia. Demikian pula, stimulasi mikro dari jaringan yang rusak tidak bisa menghasut, atau mempotensiasi tingkat perbaikan tubuh jika nutrisi yang diperlukan tidak tersedia di situs yang rusak, seperti penyembuh tulang elektromagnetik tidak bisa diharapkan untuk menjadi sukses jika tidak cukup kalsium tersedia di fraktur situs, antara banyak nutrisi lain yang diperlukan.Singkatnya, electromedicine dalam berbagai bentuk dengan cepat menjadi salah satu perawatan yang aman, berkhasiat dan efektif biaya pilihan utama saat kita memasuki abad ke-21.

What is Electromedicine

"In summary, electromedicine in its various forms is fast becoming one of the primary safe, efficacious and cost effective treatments of choice as we enter the 21st century."
Like in any therapy please note:
"Electrical stimulation that is intended to effect changes anywhere in the body can only be successful if the necessary nutrients are available when the treatment is applied. For example, researchers believe that CES helps recovering addicts by stimulating the brain to make more endorphins, but these can only be produced if the requisite amino acids and other nutrients are present in the diet and in an available form. Similarly, microcurrent stimulation of damaged tissue can not instigate, or potentiate the rate of body repair if the requisite nutrients are not available at the damaged site, just as electromagnetic bone healers can not be expected to be successful if insufficient calcium is available at the fracture site, among a multitude of other required nutrients."
In addiction to improving and/or changing the diet one must also, search for, and find the cause of the affliction and remove it - or a permanent cure is not likely.

Chris Gupta

By Ray B. Smith, Ph.D., M.P.A.

While the use of electricity for healing goes back more than 2,000 years, scientific electromedicine has only evolved in the past 50 years. The latest treatments involve only microcurrent levels of stimulation, often sufficiently minute as to not even be felt by the patient being treated.
Electrosleep treatment, usually involving less than 1.5 milliampere intensity, came into the U.S. from Japan in the late 1960s, which, in turn had borrowed it from Russia and other East Block countries. Since the electricity was pulsed across the head, the FDA renamed it cranial electrotherapy stimulation (CES) in 1978, and now allows its marketing in the U.S. for the treatment of anxiety, depression and insomnia.
A major use of CES is in the drug abstinence syndrome in which people are withdrawing from various substances of addiction, be it nicotine, alcohol, prescription drugs, cocaine or heroin. Anxiety, depression and insomnia are defining symptoms of the syndrome, and such patients benefit dramatically from the use of CES during the withdrawal period.
Transcutaneous electrical nerve stimulation (TENS), typically using a strong current of 60 milliamperes, came on the scene in the 1970s following Melzack and Wall's introduction of the gate control theory of pain in which counter stimulation could effectively close a spinal "gate" to peripheral pain messages attempting to ascend the spinal-thalamic tract to the brain. Microcurrent devices now attempt to alter or eliminate the pain message by inducing healing at the pain site, as opposed to serving as a counterirritant to close the gate to an ascending message.
Following closely upon TENS was the introduction, in the 1980s, of electromagnetic bone healing devices that are utilized to heal non-union fractures. For the first time this allows us to prevent tragedies like that of Dr. Livingston, the discoverer of the Nile, who lived the final thirty years of his life with an unhealed fracture of the arm that he suffered from a lion's bite.
So from slow beginnings in the latter half of the 20th century, we now have many FDA approved electrical devices. Some stimulate muscle contraction so that persons with paralyzed muscles can maintain muscle tone in unused limbs. Other disabled persons use them in learning to walk again, or in developing new skills in using their arms or hands, for example.
Electrical stimulators are now widely implanted in the body, such as cardiac pacemakers, electrical stimulators in various parts of the brain to prevent such things as fine tremor of the hands or whole body seizures, and dorsal column stimulators to interdict pain from various causes.
We have had electroacupuncture since the early 1970s when it was introduced from China via Hong Kong. One of the latest innovations in this area is the electroacupuncture facelift that is becoming increasingly popular.
Melzack's group has now centered their theoretical thinking on a pain neuromatrix in the brain that can fire pain messages in the absence of incoming stimuli from the body. This can account for phantom limb pain and may play a role in many types of chronic pain such as fibromyalgia and chronic spinal pain. Our latest Alpha-Stim CES research is showing dramatic improvement in pain in various parts of the body even though the current is applied only across the head.
By using Alpha-Stim technology in a combination of probe stimulation on the body near pain sites, plus CES across the head, a recent survey of 2,500 patients indicated that 94% of those suffering from arthritis reported significant improvement, as did 100% of those suffering from carpal tunnel syndrome, 94% of those suffering from chronic fatigue syndrome, 93% of those suffering from chronic pain at various sites on their body, 91% of those suffering from fibromyalgia, 98% of those suffering from migraine headache, 93% of those suffering from back and neck pain, and 89% of those suffering from Temporomandibular disorder (TMD).
Another recent study of 202 chronic pain patients treated for 30 minutes or less in several medical clinics with microcurrent probes on or near the pain site on the body, plus CES across the head, showed that their pain was reduced by an average of 50% or more, and 17% were entirely pain free at the end of the 30 minute treatment period. Only 12% experienced no benefit from that length of treatment. The pain ranged from head to foot, and no relationship could be found between pain site and percent improvement. Interestingly, those who had been in pain longest showed the greatest gains. While inconsistent with pharmaceutical intervention, that has been a recurring finding in CES studies of chronic pain.

Electrical stimulation that is intended to effect changes anywhere in the body can only be successful if the necessary nutrients are available when the treatment is applied. For example, researchers believe that CES helps recovering addicts by stimulating the brain to make more endorphins, but these can only be produced if the requisite amino acids and other nutrients are present in the diet and in an available form. Similarly, microcurrent stimulation of damaged tissue can not instigate, or potentiate the rate of body repair if the requisite nutrients are not available at the damaged site, just as electromagnetic bone healers can not be expected to be successful if insufficient calcium is available at the fracture site, among a multitude of other required nutrients.
In summary, electromedicine in its various forms is fast becoming one of the primary safe, efficacious and cost effective treatments of choice as we enter the 21st century.

Rabu, 25 April 2012

Prosedur Maintenance ECG / EKG


EKG / EKG Maintenance Prosedur 
1. Tes kualitatif Pemeliharaan Pencegahan
a. Chassis / body alat : Periksa bagian luar unit untuk kebersihan dan fisik umum
kondisi. Pastikan bahwa plastik utuh, bahwa semua perangkat keras tidak kendok kuncian baut atau sekrupnya, dan bahwa tidak ada tanda-tanda cairan tumpah atau penyalahgunaan tindakan serius yang menganggu.
b. Mount / Fasteners : Jika perangkat yang terpasang di atas atau trolley, periksa kondisi
ketinggian. Jika melekat pada dinding, atau bersandar pada rak, periksa keamanan kaitan atau braket ECG tersebut.
c. Kastor / Rem : Jika trolleyt bergerak pada kastor, periksa kondisinya. Carilah akumulasi
benang dan kotoran sekitar kastor, dan pastikan bahwa mereka berbalik dan putar, yang sesuai.
Memeriksa pengoperasian rem dan kunci putar.
d. AC Plug / Colokan sumber Daya PLN : Periksa konektor daya AC untuk kerusakan. Mencoba untuk menggoyangkan untuk memeriksa bahwa mereka aman. Cek steker dan apakah ada hal yang bisa menunjukkan sekrup longgar. Jika kerusakan diduga, buka steker dan pemeriksa. Jika peralatan tersebut ditempatkan pada keranjang yang memiliki sumber listrik tambahan untuk peralatan lain, masukkan AC dihubungkan ke masing-masing dan memverifikasi mereka dalam keadaan kuat. Pastikan tidak ada kerusakan.
e. Jalur Kabel : Periksa kabel untuk tanda-tanda kerusakan. Jika rusak, ganti kabel seluruh atau jika
kerusakan sudah dekat salah satu ujungnya, potong bagian yang rusak. Kawat kabel listrik baru atau plug pada polaritas yang sama. Periksa kabel dari pengisi daya baterai.
f. Relief ketegangan : Periksa relief ketegangan di kedua ujung kabel saluran. Pastikan bahwa mereka memegang kabel aman. Jika kabel line dilepas, sebaiknya kabelnya ditempelkan ke unit kembali sehingga
bahwa operator tidak lupa atau bingung.
g. Circuit Breaker / Fuse : Jika perangkat memiliki saklar switch-jenis, periksa bergerak bebas.
Jika perangkat dilindungi oleh sekering eksternal, periksa nilai dan jenis melawan yang ditandai pada
chassis dan memastikan bahwa cadangan disediakan.
h. Kabel : Periksa kabel sensor, elektroda, remote control dan relief ketegangan dan
 kondisi umum. Hati-hati memeriksa kabel untuk mendeteksi dalam isolasi dan untuk memastikan bahwa mereka mencengkeram kuat pada konektor di kedua ujungnya untuk mencegah rotasi atau regangan lainnya. EKG : Hubungkan unit ke simulator EKG dan memverifikasi bahwa jejak yang memadai telah diterima di setiap pasien memimpin seleksi. Pastikan tidak ada kesalahan intermiten dengan kabel regang dekat setiap akhir dan mencari operasi tidak menentu gunakan ohmmeter.
i. Kelengkapan / Konektor : Periksa semua fitting dan konektor kabel listrik untuk kondisi umum.
Pin kontak listrik atau permukaan harus lurus dan bersih. Kelengkapan harus ketat dan seharusnya tidak bocor. Jika konektor siap digunakan, pastikan bahwa sudah benar.
j. Elektroda / Probe : Konfirmasikan elektroda tersedia dengan baik dan sesuai untuk daerah penggunaan. Periksa semua dan probe untuk kondisi fisik dan kebersihan. Peralatan memiliki cairan, gel elektroda kering atau bekas-bekas di atasnya, beritahukan staf klinis. Membersihkan bantalan probe dan permukaan elektroda jika diperlukan dan memastikan mereka benar-benar kering sebelum pengujian. Preventive Maintenance Protokol. Pastikan bahwa label penyelidikan jelas mengidentifikasi unit terkait. Tidak benar dipertukarkan probe dari berbagai jenis atau dari produsen yang berbeda dapat mempengaruhi kontrol suhu. Menegaskan bahwa setiap transduser diperlukan (jika ada) berada di tangan dan memeriksa kondisi fisik mereka.
k. Kontrol / Switch : Sebelum mengubah kontrol atau batas alarm, memeriksa posisi mereka setiap
pengaturan muncul banyak sekali (misalnya, alarm batas di ujung jangkauan mereka), mempertimbangkan kemungkinan tidak tepat klinis penggunaan atau kegagalan perangkat baru . Catat pengaturan kontrol yang harus dikembalikan ke posisi aslinya berikut inspeksi. Periksa semua kontrol dan switch untuk kondisi fisik, mengamankan mounting, dan gerak yang benar. Periksa tombol-tombol kontrol tidak tergelincir pada poros mereka. Bila pengendalian harus beroperasi melawan fixed-batas berhenti, periksa untuk penyelarasan yang tepat, serta berhenti positif. Periksa switch membran untuk membran kerusakan (misalnya, dari kuku, pulpen). Selama pemeriksaan, pastikan untuk memeriksa bahwa
setiap kontrol dan switch melakukan fungsi yang tepat.
l. Baterai / Charger : Periksa kondisi fisik baterai dan konektor baterai, jika mudah
diakses. Periksa pengoperasian dioperasikan dengan baterai listrik-rugi alarm, jika demikian dilengkapi. Operasikan Unit daya baterai selama beberapa menit untuk memeriksa bahwa baterai telah terisi dan dapat menyimpan biaya. (Inspeksi ini dapat dilakukan pada daya baterai untuk membantu mengkonfirmasi baterai yang memadai kapasitas.) Periksa kondisi baterai dengan mengaktifkan fungsi tes baterai atau mengukur output tegangan. Periksa kondisi baterai dan pengisi daya, sejauh mungkin, mengkonfirmasi bahwa itu
tidak, pada kenyataannya, mengisi baterai. Pastikan bahwa baterai diisi atau pengisian ketika
pemeriksaan selesai. Beberapa baterai memerlukan debit mendalam periodik dan pengisian ulang untuk
mempertahankan kapasitas baterai maksimum. Jika ini direkomendasikan oleh produsen, memverifikasi bahwa sedang dilakukan sesuai jadwal.
m. Indikator / tanda visual  : Selama pemeriksaan, mengkonfirmasi pengoperasian semua lampu,
indikator, dan tampilan visual pada unit dan charger, jika demikian dilengkapi. Pastikan bahwa semua segmen dari fungsi tampilan digital dengan benar.
n. Pengguna Kalibrasi / Self-Test: Ulangi pengoperasian fitur ini, jika ada.
o. Alarm: Mengoperasikan perangkat dengan cara yang mengaktifkan semua alarm. Periksa apapun yang terkait Interlocks fungsi. Periksa aksi terputus-probe alarm, jika unit sehingga dilengkapi. Jika perangkat
memiliki fitur alarm-diam, memeriksa metode reset. hal. Sinyal Audible: Mengoperasikan perangkat untuk mengaktifkan setiap sinyal terdengar. Konfirmasi sesuai volume, serta pengoperasian kontrol volume, jika demikian dilengkapi. Jika alarm terdengar telah dibungkam atau volume yang ditetapkan terlalu rendah, staf klinis waspada terhadap pentingnya menjaga alarm di sesuai tingkat.
q. Pelabelan: Periksa semua label yang diperlukan, bagan konversi, dan kartu instruksi yang hadir
dan dapat dibaca.
r. Aksesoris
Preventive Maintenance Protokol
2. Pemeliharaan Uji Keamanan Preventif Listrik
a. Grounding Resistance: Menggunakan ohmmeter, analisa keselamatan listrik, atau multimeter dengan baik resolusi fraksional, mengukur ohm dan merekam perlawanan antara pin ground dari kabel listrik dan terbuka (tidak dicat dan tidak anodized) logam pada sasis. Kami merekomendasikan maksimal 0,5 ohm.
b. Sekarang Kebocoran: Ukur chassis kebocoran arus ke tanah dengan konduktor pentanahan
plug-peralatan yang terhubung sementara dibuka. Mengoperasikan perangkat dalam semua mode normal, termasuk
pada, siaga, dan mematikan, dan catatan kebocoran maxi-mum saat ini. Chassis saat ini untuk kebocoran
tanah tidak boleh melebihi 300μA.
3. Preventive Maintenance Tes Kuantitatif
a. Kertas: Lampirkan mencetak untuk Formulir AM jika tersedia.
b. Tingkat Kalibrasi: Menggunakan EKG simulasi dengan tingkat 30, 60, 80120 dan 160 pulsa per
menit, pastikan bahwa indikator denyut jantung menampilkan tingkat dalam 5% atau 5bpm, mana yang lebih besar. Pastikan visual QRS dan terdengar kerja indikator.
Set (bpm) menyampaikan (bpm)
Min (30)
60
80
120
Max (160)
4. Preventive Maintenance
a. Bersihkan eksterior dan interior
b. Melumasi dan membersihkan perakitan kipas jika diperlukan
c. Kalibrasi jika diperlukan
d. Ganti filter dan baterai jika diperlukan berdasarkan Kebijakan Parts Dijadwalkan Penggantian.